Conservation sector meeting on the Determination of Water Resource Classes, Reserve and RQOs - Luvuvhu

Background to "The Reserve" and Surface water Reserve determination

Presented by: Designation: Directorate: Barbara Weston Scientific Manager Reserve Determination

Date:

04 February 2025

WATER IS LIFE - SANITATION IS DIGNITY

water & sanitation

Department: Water and Sanitation **REPUBLIC OF SOUTH AFRICA**

WATER RESOURCE PROTECTION FOR SUSTAINABLE DEVELOPMENT

WATER RESOURCE PROTECTION ...

- Freshwater is fundamental to socio-economic development and environmental sustainability – PROVIDE ECOSYSTEM SERVICES
- Water in SA is scarce and unevenly distributed throughout the country
- Very few water sources that are in a natural state and therefore protection measures are critical (loss of wetlands and strategic water resources)
- The world has become more and more aware of the need to protect our natural water resources, hence the various treaties, conventions and agreements between RSA and other countries (i.e. RAMSAR, Sustainable Development Goals, National Biodiversity Plans, NFEPA, etc.)
- Global funding focussing on developing countries to assist with Natural Resource Protection with focus on **SUSTAINABILITY**

The National Water Act 36 of 1998

Purpose: Ensure that Nation's water resources are:

Protected
Used
Controlled
Managed
Conserved
Developed

Principles: Sustainability

Equity

Efficiency

Striking a balance between protection of water resources and usage

 Otherwise water resources may be used beyond its resilience capability to recover and it will become threatened and un- useable.... Promoting <u>social and</u> <u>economic</u> development at the same time ensuring the environment is protected now and for the future

everyone must have access to water and to the benefits of using water. •Fair allocation of water

Water should not be wasted

RESERVE AND WATER RESOURCES PROTECTION...

RESERVE

- NWA Chapter 3 Part 3: Reserve:
- Means the quantity and quality of water required:
- (a) to satisfy basic human needs by securing a basic water supply, for current and future populations; and
- (b) to protect aquatic ecosystems in order to secure ecologically sustainable development and use of the relevant water resource.

Balancing equity with sustainability - the Reserve If all the water in the catchment could be put into a cylinder, the "Reserve" is the water that must always be left in the cylinder for basic human needs and ecological needs.

- S16 Gazetted after class determined, and RQOs set
- S17 preliminary Reserve

Reserve cont.

- Specifies the **flow and water quality** required to keep the water resource in a certain state of health;
- Specifies not only the volume, but also the required frequency and duration of certain flows;
- Also specifies the condition in which the Biota and Abiota should be managed in order to maintain or improve the overall health of the River System

IMPACTS ON WATER RESOURCES AND OTHER NATURAL RESOURCES...

RESERVE: (4 levels)

PES + EIS =

OPERATIONAL

SCENARIOS

Reserve Determination

ECOLOGICAL

CATEGORY (BAS)

RQO'S

WATER IS LIFE - SANITATION IS DIGNITY

REC

EWR

Present Ecological State (PES)

- A description of the current health status of a water resource as compared to its natural conditions
- Determined using various indicators of water resource health.

2/10/2023S LIFE - SANITATION IS DIGNITY

The PES results are expressed as a category:

Ecological category	Description	Median rating
А	Natural, unmodified natural	<0.6
В	Largely natural with few modifications. The flow regime has been only slightly modified and pollution is limited to sediment. A minor change in natural habitats may have taken place. However, the ecosystem functions are essentially unchanged	>0.5, <1.1
с	Moderately modified. Loss and change of natural habitat and biota have occurred, but the basic ecosystem functions are still predominantly unchanged	>1, <2.1
D	Largely modified. A large loss of natural habitat, biota and basic ecosystem functions has occurred	>2, <3.1
E	Seriously modified. The loss of natural habitat, biota and basic ecosystem functions is extensive	>3, <4.1
F	Critically or extremely modified. Modifications have reached a critical level and the system has been modified completely with an almost complete loss of natural habitat and biota. In the worst instances, the basic ecosystem functions have been destroyed and the changes are irreversible	>4

Ecological Importance and Sensitivity (EIS)

Ecological importance: of a water resource is an expression of its importance to the maintenance of ecological diversity and functioning on local and wider scales

Ecological sensitivity: refers to a systems ability to resist disturbance and its capability to recover from disturbance once it has occurred

➢Both abiotic and biotic components of the system are taken into consideration in the assessment

The EIS results are given as one of 4 levels: Very High, High, Moderate
 & Low

Can be used to guide or influence the decision on the level of protection required for a water resource

Recommended Ecological Category (REC)

- The level of protection that can be afforded for the affected water resource
- Ecological Categories A to D are recommended as future states, depending on the PES and EIS.

PES	EIS	REC
C	Very High	В
C	High	B/C
С	Moderate	С
С	Low	С

- Ecological Categories **E and F are not recommended, because it :**
 - Not considered <u>sustainable</u> for the ecological integrity of a water resource
 - regarded as ecologically unacceptable, and remediation is needed.

Summary of EWR rule curves for : Harts EWR17 Determination based on defined BBM Table with site specific assurance rules. Regional Type: Lowveld

Ecological Category = D

Data are given in m^3/s mean monthly flow

Reserve with high flows											
	% Points										
Month	10%	20%	30%	40%	50%	60%	70%	80%	90 %	998	
Oct	0.646	0.407	0.399	0.396	0.396	0.285	0.133	0.061	0.029	0.017	
Nov	1.752	0.516	0.401	0.386	0.382	0.378	0.378	0.378	0.376	0.374	
Dec	3.118	1.296	0.694	0.597	0.564	0.545	0.366	0.148	0.052	0.021	
Jan	3.776	3.584	2.307	1.090	0.851	0.780	0.458	0.170	0.050	0.025	
Feb	7.239	6.843	5.560	1.128	0.790	0.695	0.608	0.532	0.317	0.246	
Mar	10.503	9.817	4.406	2.285	0.728	0.590	0.362	0.276	0.246	0.240	
Apr	5.182	4.891	3.434	1.377	0.775	0.255	0.120	0.104	0.101	0.062	
May	1.527	1.191	0.810	0.743	0.646	0.523	0.067	0.066	0.064	0.053	
Jun	0.961	0.849	0.752	0.698	0.648	0.292	0.122	0.052	0.026	0.020	
Jul	0.904	0.758	0.680	0.627	0.405	0.178	0.077	0.036	0.021	0.016	
Aug	0.732	0.579	0.429	0.385	0.191	0.080	0.035	0.018	0.012	0.010	
Sep	0.428	0.266	0.158	0.154	0.154	0.068	0.029	0.014	0.009	0.008	
Reserve	flows wi	thout High	n Flows								
Oct	0.646	0.407	0.399	0.396	0.396	0.344	0.165	0.074	0.034	0.018	
Nov	1.752	0.516	0.401	0.386	0.382	0.378	0.306	0.133	0.054	0.024	
Dec	3.108	1.296	0.694	0.597	0.564	0.545	0.282	0.113	0.043	0.021	
Jan	3.765	3.531	2.307	1.090	0.851	0.780	0.344	0.127	0.042	0.025	
Feb	7.259	6.933	5.560	1.128	0.790	0.695	0.608	0.570	0.348	0.246	
Mar	6.381	6.022	4.406	2.285	0.728	0.590	0.362	0.276	0.106	0.042	
Apr	5.182	4.891	3.434	1.377	0.775	0.255	0.120	0.104	0.101	0.062	
May	1.527	1.191	0.810	0.743	0.646	0.523	0.067	0.066	0.064	0.053	
Jun	0.961	0.849	0.752	0.698	0.648	0.359	0.151	0.062	0.029	0.020	
Jul	0.904	0.758	0.680	0.627	0.475	0.215	0.093	0.042	0.022	0.016	
Aug	0.732	0.579	0.429	0.385	0.191	0.080	0.035	0.018	0.012	0.010	
Sep	0.428	0.266	0.158	0.154	0.154	0.082	0.034	0.016	0.009	0.008	
Natural	Duration	curves									
Oct.	0.646	0.407	0.399	0.396	0.396	0.395	0.392	0.392	0.392	0.388	
Nov	1,752	0.516	0.401	0.386	0.382	0.378	0.378	0.378	0.376	0.374	
Dec	3.805	1.296	0.694	0.597	0.564	0.545	0.541	0.541	0.538	0.537	
Jan	19.609	6.870	2.307	1.090	0.851	0.780	0.765	0.754	0.752	0.750	
Feb	28.807	19.742	5.560	1,128	0.790	0.695	0.608	0.570	0.563	0.561	
Mar	29.514	13.534	4.406	2.285	0.728	0.590	0.362	0.276	0.246	0.240	
Apr	23.646	9.383	3.434	1.377	0.775	0.255	0.120	0.104	0.101	0.099	
Mav	1.527	1.191	0.810	0.743	0.646	0.523	0.067	0.066	0.064	0.063	
Jun	0,961	0.849	0.752	0.698	0.648	0.579	0.421	0.062	0.061	0.059	
J11]	0.904	0.758	0.680	0.627	0.586	0.564	0.444	0.093	0.091	0.090	
Aug	0.732	0.579	0.429	0.385	0.362	0.343	0.258	0.119	0.117	0.115	
Sep	0.428	0.266	0.158	0.154	0.154	0.154	0.152	0.150	0.150	0.147	

Occurrence of flow volumes for a certain amount of time in a year for each month.

KUL

Low flows flows that should be equaled or exceeded in a month to satisfy the Reserve requirements **Natural flows**

15

17

2 /MA/DAR

Example of SW Reserve QUALITY Parameters

River: Vaal		EWR 1: at Uitkoms	Water quality monitoring site/gauge: C1H007/ VS4 GDDC11					
	MgSO ₄	The 95 th percentile of the data must be \leq 28 mg/L						
	Na ₂ SO ₄	The 95 th percentile of the data must be ≤ 38 mg/L						
Inorganic Salts	MgCl ₂	The 95 th percentile of the data must be	≤36 mg/L					
	CaCl ₂	The 95 th percentile of the dat a must be	≤69 mg/L					
	NaCl	The 95 th percentile of the data must be	≤243 mg/L					
	CaSO ₄	The 95 th percentile of the data must be ≤ 351 mg/L						
	Electrical Conductivity	The 95 th percentile of the data must be ≤ 70 mS/m						
Physical variables	рН	The 5 th percentile of the data must be 6.5 to 8.0, and the 95th percentile 8.0 to 8.8						
	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L						
Nutviente	Total inorganic Nitrogen (TIN)	The 50 th percentile of the data must be ≤0.7 mg/L						
Nutrients	PO ₄ -P	The 50 th percentile of the data must be	≤0.020 mg/L					
Deserve isklas	Chl-a phytoplankton	The 50 th percentile of the data must be	<20 μg/L					
Response variables	Chl-a periphyton	The 50 th percentile of the data must be	<21 mg/m ²					
	Ammonia	The 95 th percentile of the data must be ≤ 0.044 mg/L						
Taviaa	Atrazine	The 95 th percentile of the data must be	≤ 0.064 mg/l					
	Fluoride	The 95 th percentile of the data must be	≤ 2.5 mg/L					
	Endosulfan	The 95 th percentile of the data must be ≤ 0.13 μg/l						

Wetlands

- Mostly triggered by WULAs
- For all activities occurring within a wetland including its
 500m radius
- Activities usually Sec 21 (c) and (i) (non-consumptive):
 - Pipelines;
 - Roads;
 - Various mining activities;
- Wetland Delineation:
 - Delineation not done in-house

Results of wetland Reserve determination

Quat	Wetland group	PES	EIS	REC
G22D	Channelled valley bottom wetland	С	Moderate	С
	Hillslope seep	B/C	Moderate	B/C
	Depressions associated with Dams	C/D	Moderate	C/D

What the Reserve is Not...

- The Reserve is not a quick fix to get water to a water user's property....
- It is not set for a specific user...
- It can not be implemented on its own...
- It is not a tool to prevent development or other environmental authorization...
- It is not a simple method.....
- It does not require more than what would have been required naturally...
- The Reserve is not the "Fixer" of an already degraded and impacted catchment, water resources SURFACE AND GROUNDWATER should be managed from source to sea and that requires integration and partnerships.

What the Reserve is ...

- Determine requirements to obtain Healthy ecosystems that provide ecosystem services that society is dependent on;
- In order to achieve the desired protection and sustainable use water resource, there's a need to ensure that the Reserve is implemented, and that land use is integrated in Integrated Water Resource Management which is not just the DWS responsibility:
- MONITORING is THE key , you can't manage what you can't MEASURE -Constant and accurate flow (quantity) and water quality monitoring;
- Assessment, interpretation of data -, to be used and applied in implementation plans, compliance monitoring, regulation and enforcement; requires not only trained technical officials, but it is also a sectoral responsibility;

RDM IN THE CONTEXT OF IWRM

THANK YOU!

https://www.dws.gov.za/wem/currentstudies/

Conservation sector meeting on the Determination of Water Resource Classes, Reserve and RQOs - Luvuvhu

Groundwater component of the Reserve

Presented by: Designation: Directorate: Kwazikwakhe Majola Scientific Manager Reserve Determination

Date:

04 February 2025

WATER IS LIFE - SANITATION IS DIGNITY

water & sanitation

Department: Water and Sanitation **REPUBLIC OF SOUTH AFRICA**

Conservation sector meeting on the Determination of Water Resource Classes, Reserve and RQOs - Luvuvhu

PRESENTATION OUTLINE

- 1. Definition of the Reserve
- 2. Groundwater Quantity component of the Reserve
- 3. Groundwater Quality component of the Reserve

DEFINITION OF THE RESERVE

Ecological Needs – from groundwater:

- EWR-Maintenance Low Flow,
- Groundwater contribution to Baseflow,
- Water requirements by Groundwater-Dependent Ecosystems (aquatic & terrestrial),

• Etc.

- S16 Gazetted after class determined, and RQOs set
- S17 preliminary Reserve

GROUNDWATER QUANTITY COMPONENT OF THE RESERVE

Parameters:

- Population
- Basic human needs
- Recharge
- Groundwater Use
- Stress Index
- Baseflow
- Groundwater contribution to baseflc
- Maintenance low flow (EWR_MLF)

Process:

- Preparatory phase
- Description of the study area
- Delineation of gw resource units
- Groundwater Resource categorization (Stress Index)
- Quantification of Reserve

Groundwater Reserve Template

Categorization

Present Status Category	Description	Stress Index
		(abstraction/recharge)
Α		<0.05
В	Unstressed or slightly stressed	0.05 – 0.20
С		0.20 - 0.40
D	Moderately stressed	0.40 – 0.65
E	Highly stressed	0.65 – 0.95
F	Critically stressed	>0.95

Template

- Reserve (%) = [(EWRgw + BHNgw)/ Re] x 100
- GWallocable = (Re + GWin GWout) BHN GW

Catchment	Area (km²)	Recharge (Mm³/a)	Population	Baseflow (Mm³/a)	EWR_MLF or GW_BF (Mm³/a)	BHN Reserve (Mm³/a)	EWR_MLF/ GW_BF as % of Recharge	BHN as % of Recharge
C51H	178	9.9*	13 412**	1.3***	1.41****	0.12****	1.2	14.2

GROUNDWATER QUALITY COMPONENT OF THE RESERVE

Guidelines

		Farget Water Qual	ity Ranges per Water Qu	ality Class
Chemical Parameter	Class 0	Class I	Class II	Class III
pH	6 – 9	5-6&9-9.5	4-5 & > 9.5-10	<4 & >10
Electrical Conductivity	< 70	70 - 150	150 - 370	> 370
Calcium as <u>Ca</u>	< 80	80 - 150	150-300	> 300
Magnesium as Mg	< 70	70 - 100	100 - 200	> 200
Sodium as Na	< 100	100 - 200	200 - 400	> 400
Chloride as <u>Cl</u>	< 100	100 - 200	200 - 600	> 600
Sulphate as SO ₄	< 200	200 - 400	400 - 600	> 600
Nitrate as <u>NO_x-N</u>	< 6	6 - 10	10 - 20	> 20
Fluoride as F	<0.7	0.7 - 1.0	1.0-1.5	> 1.5

Process

Water Quality Class	Ca	CL	EC	F	Mg	NO₃	Na	SO ₄	рН	
(WRC, 1998)	mg/l	mg/l	mS/m	mg/l	mg/l	mg/l	mg/l	mg/l		
Class 0	80	100	70	0.7	70	6	100	200	6-9	
Class I	150	200	150	1	100	10	200	400	5-6 & 9-9.5	
Class II	300	600	370	1.5	200	20	400	600	4-5 & 9.5-10	
Class III	>300	>600	>370		>200	>20	>400	>600		Study Area
No of samples	81	81	81	81	81	81	81	81	81	Water Ouality
Median	36.50	187.40	103.80	0.28	14.90	3.24	164.00	27.20	8.10	Class
Average	43.63	263.32	123.73	0.35	20.09	5.14	187.44	39.93	8.05	
95 th percentile	107.70	588.90	251.00	0.72	51.10	18.26	402.80	87.80	8.50	
5 th percentile	8.10	57.10	42.10	0.13	1.80	0.02	61.80	6.20	7.30	
Reserve Limits (Median + 10%; provided the sum does not exceed Class I limits)	40.15	187.40	114.18	0.31	16.39	3.56	180.40	29.92	8.00 - 8.91	Class I

Example

GENERAL CHEMISTRY

Parameter	Ambient Ground Water Quality ¹⁾	Basic Human Needs Reserve ²⁾	Ground Water Quality Reserve ³⁾
Calcium (mg/l)	73.84	<150	81.22
Magnesium (mg/l)	38.10	<100	41.91
Sodium (mg/l)	516.08	<200	516.08
Chloride (mg/l)	675.64	<200	675.64
Sulphate (mg/l)	136.08	<400	149.68
Nitrate (mg/l)	2.16	<10	2.38
Fluoride (mg/l)	0.61	<1.0	0.67

PHYSICAL WATER QUALITY

Parameter	Ambient Ground Water Quality ¹⁾	Basic Human Needs Reserve ²⁾	Ground Water Quality Reserve ³⁾
рН	7.91	5.0 – 9.5	8.70
Electrical Conductivity (mS/m)	284.00	< 150	284.00

Conservation sector meeting on the Determination of Water Resource Classes, Reserve and RQOs - Luvuvhu

To Note

- Groundwater Reserve is determined for a quaternary catchment or Groundwater Resource Unit, <u>not</u> for a water user/applicant.
- Reserve limits/threshold (quality) are applicable to the catchment or Groundwater Resource Unit as water resource conditions, <u>not</u> Water Use License Conditions.
- Reserve limits/threshold should be based on all water quality data from the study area.
- Submission of all relevant documents & all existing water quality data for Reserve determination is crucial.

itoring l	Drainage F	Date	Ca	Cl	EC	F	Mg-Diss	NO3+NO2	Na	SO4	TAL	pН	Data Source
6260	W12H	2017/11/15	15,5	57,1	54,5	0,125	8,5	15,274	87,5	20	101,5	8,5	
<mark>∞6261</mark>	W12H	2017/09/13	14,5	44,7	51,3	0,154	7,7	18,255	76,8	17,7	86,2	8,2	Water User-1
6265	W12H	2017/09/13	13,6	122,2	61,7	0,123	10,4	14,432	89,8	24,1	71	8,3	
6265	W12H	2017/11/15	15,2	106	63,2	0,146	11,2	10,304	88,9	28,3	72,1	8,2	
6269	W12H	2017/09/13	10	91,4	71,9	0,26	12,8	9,453	119,8	19,3	163,1	8,6	Water User-2
196431	W12G	2017/11/14	50,8	93,6	74,3	0,531	30,5	0,787	58,5	26,9	260	<mark>8,5</mark>	
196432	W12H	2017/11/14	33,9	98,5	89,1	0,311	28,4	14,248	30,4	45	250,5	7,9	
196433	W12H	2017/11/15	5,9	113	65,8	0,126	11,1	12,536	97,5	5,5	109,4	8,4	New Applicant
196434	W12H	2017/11/14	36,6	187,4	132,9	0,349	33,2	20,733	203,1	60,4	307	8,7	
196435	W12H	2017/11/14	14,4	280,7	127,4	0,224	15,2	0,193	234,5	5,9	201,8	8,5	
196436	W12H	2017/11/14	76,5	255,3	157,8	0,383	59,7	8,705	173,4	83,8	380,1	8,4	
196438	W12H	2017/11/14	32,2	170,5	124,2	0,368	23,3	18,681	204,1	48,1	301,5	8,4	WMS
196439	W12H	2017/11/15	26,9	59,3	57,4	0,257	8,6	6,127	71,4	54,2	133,6	8,5	
196453	W12H	2017/11/16	5,6	59,1	34,1	0,242	6,6	3,581	101,4	5,1	45,5	7	
		Classes	Ca (mg/l)	Cl (mg/l)	EC (mS/m	F (mg/l)	Mg (mg/l	NO3+NO2	Na (mg/l)	SO4 (mg/	TAL (mg/l	pH (pH un	Catchment Class
		Class 0	80	100	70	0,7	70	6	100	200		6-9	
		Class I	150	200	150	1	100	10	200	400		5-6 & 9-9.5	5
		Class II	300	600	370	3,5	200	20	400	600	4	-5 & 9.5-1	0
		Class III	>300	>600	>370	>3.5	>200	>20	>400	>600		<4 & >10	
		No of samples	16	16	16	16	16	16	16	16	16	16	
		Median	15,35	102,25	68,85	0,23	12,00	9,88	99,45	27,05	170,45	8,45	Class I
		Average	24,11	121,45	82,46	0,25	18,50	9,94	117,33	32,69	178,59	8,32	
		95,00	57,23	261,65	139,13	0,42	39,83	19,19	211,70	66,25	325,28	8,63	
		5,00	5,83	54,00	47,00	0,12	7,43	0,16	51,48	5,40	64,63	7,68	
		Reserve	16,89	112,48	75,74	0,26	13,20	10,87	109,40	29,76	187,50	9,30	

Conservation sector meeting on the Determination of Water Resource Classes, Reserve and RQOs - Luvuvhu Monitoring for the Reserve limits

(a) Chloride (Cl) Site: 2626DB00350 Concentration (Mg/L) Standard Limit Linear (CI) 10-70-7661 03-01 2000-11-01 2002-07-01 2004-03-01 2007-07-01 2009-03-01 2010-11-01 2012-07-01 2014-03-01 2015-11-01 10-11-266 2017-07-01 Time (Months)

THANK YOU!

https://www.dws.gov.za/wem/currentstudies/